Optimizing performance of nonparametric species richness estimators under constrained sampling
نویسندگان
چکیده
Understanding the functional relationship between the sample size and the performance of species richness estimators is necessary to optimize limited sampling resources against estimation error. Nonparametric estimators such as Chao and Jackknife demonstrate strong performances, but consensus is lacking as to which estimator performs better under constrained sampling. We explore a method to improve the estimators under such scenario. The method we propose involves randomly splitting species-abundance data from a single sample into two equally sized samples, and using an appropriate incidence-based estimator to estimate richness. To test this method, we assume a lognormal species-abundance distribution (SAD) with varying coefficients of variation (CV), generate samples using MCMC simulations, and use the expected mean-squared error as the performance criterion of the estimators. We test this method for Chao, Jackknife, ICE, and ACE estimators. Between abundance-based estimators with the single sample, and incidence-based estimators with the split-in-two samples, Chao2 performed the best when CV < 0.65, and incidence-based Jackknife performed the best when CV > 0.65, given that the ratio of sample size to observed species richness is greater than a critical value given by a power function of CV with respect to abundance of the sampled population. The proposed method increases the performance of the estimators substantially and is more effective when more rare species are in an assemblage. We also show that the splitting method works qualitatively similarly well when the SADs are log series, geometric series, and negative binomial. We demonstrate an application of the proposed method by estimating richness of zooplankton communities in samples of ballast water. The proposed splitting method is an alternative to sampling a large number of individuals to increase the accuracy of richness estimations; therefore, it is appropriate for a wide range of resource-limited sampling scenarios in ecology.
منابع مشابه
Nonparametric lower bounds for species richness and shared species richness under sampling without replacement.
A number of species richness estimators have been developed under the model that individuals (or sampling units) are sampled with replacement. However, if sampling is done without replacement so that no sampled unit can be repeatedly observed, then the traditional estimators for sampling with replacement tend to overestimate richness for relatively high-sampling fractions (ratio of sample size ...
متن کاملEvaluating the performance of species richness estimators: sensitivity to sample grain size.
1. Fifteen species richness estimators (three asymptotic based on species accumulation curves, 11 nonparametric, and one based in the species-area relationship) were compared by examining their performance in estimating the total species richness of epigean arthropods in the Azorean Laurisilva forests. Data obtained with standardized sampling of 78 transects in natural forest remnants of five i...
متن کاملSufficient sampling for asymptotic minimum species richness estimators.
Biodiversity sampling is labor intensive, and a substantial fraction of a biota is often represented by species of very low abundance, which typically remain undetected by biodiversity surveys. Statistical methods are widely used to estimate the asymptotic number of species present, including species not yet detected. Additional sampling is required to detect and identify these species, but ric...
متن کاملThe concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance
The purpose of this review is to clarify the concepts of bias, precision and accuracy as they are commonly defined in the biostatistical literature, with our focus on the use of these concepts in quantitatively testing the performance of point estimators (specifically species richness estimators). We first describe the general concepts underlying bias, precision and accuracy, and then describe ...
متن کاملThe Ant Fauna of a Tropical Rain Forest: Estimating Species Richness Three Different Ways
Species richness is an important characteristic of ecological communities, but it is difficult to quantify. We report here a thorough inventory of a tropical rain forest ant fauna and use it to evaluate species richness estimators. The study was carried out in ;1500 ha of lowland rain forest at La Selva Biological Station, Costa Rica. Diverse methods were used, including canopy fogging, Malaise...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016